Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 476
Filtrar
1.
J Alzheimers Dis ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728190

RESUMO

Background: TAR DNA binding protein 43 (TDP-43) has been shown to be associated with whole hippocampal atrophy in primary age-related tauopathy (PART). It is currently unknown which subregions of the hippocampus are contributing to TDP-43 associated whole hippocampal atrophy in PART. Objective: To identify which specific hippocampal subfield regions are contributing to TDP-43-associated whole hippocampal atrophy in PART. Methods: A total of 115 autopsied cases from the Mayo Clinic Alzheimer Disease Research Center, Neurodegenerative Research Group, and the Mayo Clinic Study of Aging were analyzed. All cases underwent antemortem brain volumetric MRI, neuropathological assessment of the distribution of Aß (Thal phase), and neurofibrillary tangle (Braak stage) to diagnose PART, as well as assessment of TDP-43 presence/absence in the amygdala, hippocampus and beyond. Hippocampal subfield segmentation was performed using FreeSurfer version 7.4.1. Statistical analyses using logistic regression were performed to assess for associations between TDP-43 and hippocampal subfield volumes, accounting for potential confounders. Results: TDP-43 positive patients (n = 37, 32%), of which 15/15 were type-α, had significantly smaller whole hippocampal volumes, and smaller volumes of the body and tail of the hippocampus compared to TDP-43 negative patients. Subfield analyses revealed an association between TDP-43 and the molecular layer of hippocampal body and the body of cornu ammonis 1 (CA1), subiculum, and presubiculum regions. There was no association between TDP-43 stage and subfield volumes. Conclusions: Whole hippocampal volume loss linked to TDP-43 in PART is mainly due to volume loss occurring in the molecular layer, CA1, subiculum and presubiculum of the hippocampal body.

2.
J Neurol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578498

RESUMO

OBJECTIVE: To evaluate the utility of clinical assessment scales for MRI and 18F-FDG-PET as potential in vivo predictive diagnostic tools for TAR DNA-binding protein of 43 kDa (TDP-43) proteinopathy in cases with low-intermediate Alzheimer's disease neuropathologic changes (ADNC) and primary age-related tauopathy (PART). METHODS: We conducted a cross-sectional analysis on patients with antemortem MRI and 18F-FDG-PET scans and postmortem diagnosis of low-intermediate ADNC or PART (Braak stage ≤ III; Thal ß-amyloid phase 0-5). We employed visual imaging scales to grade structural changes on MRI and metabolic changes on 18F-FDG-PET and statistically compared demographic and clinicopathological characteristics between TDP-43 positive and negative cases. Independent regression analyses were performed to assess further influences of pathological characteristics on imaging outcomes. Within-reader repeatability and inter-reader reliability were calculated (CI = 0.95). Additional quantitative region-of-interest analyses of MRI gray matter volumes and PET ligand uptake were performed. RESULTS: Of the 64 cases in the study, 20 (31%) were TDP-43 ( +), of which 12 (60%) were female. TDP-43 ( +) cases were more likely to have hippocampal sclerosis (HS) (p = 0.014) and moderate-severe medial temporal lobe atrophy on MRI (p = 0.048). TDP-43( +) cases also showed a trend for less parietal atrophy on MRI (p = 0.086) and more medial temporal lobe hypometabolism on 18F-FDG-PET (p = 0.087) than TDP-43( - ) cases. Regression analysis showed an association between medial temporal hypometabolism and HS (p = 0.0113). ICC values for MRI and PET within one reader were 0.75 and 0.91; across two readers were 0.79 and 0.82. The region-of-interest-based analysis confirmed a significant difference between TDP-43( +) and TDP-43( - ) cases for medial temporal lobe gray matter volume on MRI (p = 0.014) and medial temporal metabolism on PET (p = 0.011). CONCLUSION: Visual inspection of the medial temporal lobe on MRI and FDG-PET may help to predict TDP-43 status in the context of low-intermediate ADNC and PART.

3.
J Neurol ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583104

RESUMO

BACKGROUND AND OBJECTIVES: Nonfluent variant primary progressive aphasia (nfvPPA) and primary progressive apraxia of speech (PPAOS) can be precursors to corticobasal syndrome (CBS). Details on their progression remain unclear. We aimed to examine the clinical and neuroimaging evolution of nfvPPA and PPAOS into CBS. METHODS: We conducted a retrospective longitudinal study in 140 nfvPPA or PPAOS patients and applied the consensus criteria for possible and probable CBS for every visit, evaluating limb rigidity, akinesia, limb dystonia, myoclonus, ideomotor apraxia, alien limb phenomenon, and nonverbal oral apraxia (NVOA). Given the association of NVOA with AOS, we also modified the CBS criteria by excluding NVOA and assigned every patient to either a progressors or non-progressors group. We evaluated the frequency of every CBS feature by year from disease onset, and assessed gray and white matter volume loss using SPM12. RESULTS: Asymmetric akinesia, NVOA, and limb apraxia were the most common CBS features that developed; while limb dystonia, myoclonus, and alien limb were rare. Eighty-two patients progressed to possible CBS; only four to probable CBS. nfvPPA and PPAOS had a similar proportion of progressors, although nfvPPA progressed to CBS earlier (p-value = 0.046), driven by an early appearance of limb apraxia (p-value = 0.0041). The non-progressors and progressors both showed premotor/motor cortex involvement at baseline, with spread into prefrontal cortex over time. DISCUSSION: An important proportion of patients with nfvPPA and PPAOS progress to possible CBS, while they rarely develop features of probable CBS even after long follow-up.

4.
Mov Disord ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586905

RESUMO

BACKGROUND: Midbrain atrophy is a characteristic feature of progressive supranuclear palsy (PSP), observed in PSP-Richardson's syndrome (PSP-RS) and to a lesser extent PSP-parkinsonism (PSP-P). OBJECTIVE: Our aim was to critically evaluate the utility of manual magnetic resonance imaging measurements of the midbrain tectal plate as a diagnostic biomarker in PSP. METHODS: Length of the tectal plate and width of the superior and inferior colliculi were measured in 40 PSP (20 PSP-RS and 20 PSP-P) patients and compared with 20 Parkinson's disease and 20 healthy control subjects. RESULTS: Tectal plate length was reduced in both PSP groups compared with Parkinson's disease and control subjects and was most abnormal in PSP-RS followed by PSP-P. Reduced tectal plate length was associated with worse PSP Rating Scale scores. CONCLUSIONS: Simple manual measurements of tectal plate length show utility as a diagnostic biomarker in PSP, particularly for PSP-RS. © 2024 International Parkinson and Movement Disorder Society.

5.
Brain Commun ; 6(2): fcae097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572268

RESUMO

Two variants of semantic dementia are recognized based on the laterality of temporal lobe involvement: a left-predominant variant associated with verbal knowledge impairment and a right-predominant variant associated with behavioural changes and non-verbal knowledge loss. This cross-sectional clinicoradiologic study aimed to assess whole hippocampal, subregion, and/or subfield volume loss in semantic dementia versus controls and across its variants. Thirty-five semantic dementia participants and 15 controls from the Neurodegenerative Research Group at Mayo Clinic who had completed 3.0-T volumetric magnetic resonance imaging and 18F-fluorodeoxyglucose-positron emission tomography were included. Classification as left-predominant (n = 25) or right-predominant (n = 10) variant was based on temporal lobe hypometabolism. Volumes of hippocampal subregions (head, body, and tail) and subfields (parasubiculum, presubiculum, subiculum, cornu ammonis 1, cornu ammonis 3, cornu ammonis 4, dentate gyrus, molecular layer, hippocampal-amygdaloid transition area, and fimbria) were obtained using FreeSurfer 7. Subfield volumes were measured separately from head and body subregions. We fit linear mixed-effects models using log-transformed whole hippocampal/subregion/subfield volumes as dependent variables; age, sex, total intracranial volume, hemisphere and a group-by-hemisphere interaction as fixed effects; and subregion/subfield nested within hemisphere as a random effect. Significant results (P < 0.05) are hereby reported. At the whole hippocampal level, the dominant (predominantly involved) hemisphere of both variants showed 23-27% smaller volumes than controls. The non-dominant (less involved) hemisphere of the right-predominant variant also showed volume loss versus controls and the left-predominant variant. At the subregional level, both variants showed 17-28% smaller dominant hemisphere head, body, and tail than controls, with the right-predominant variant also showing 8-12% smaller non-dominant hemisphere head than controls and left-predominant variant. At the subfield level, the left-predominant variant showed 12-36% smaller volumes across all dominant hemisphere subfields and 14-15% smaller non-dominant hemisphere parasubiculum, presubiculum (head and body), subiculum (head) and hippocampal-amygdaloid transition area than controls. The right-predominant variant showed 16-49% smaller volumes across all dominant hemisphere subfields and 14-22% smaller parasubiculum, presubiculum, subiculum, cornu ammonis 3, hippocampal-amygdaloid transition area (all from the head) and fimbria of non-dominant hemisphere versus controls. Comparison of dominant hemispheres showed 16-29% smaller volumes of the parasubiculum, presubiculum (head) and fimbria in the right-predominant than left-predominant variant; comparison of non-dominant hemispheres showed 12-15% smaller cornu ammonis 3, cornu ammonis 4, dentate gyrus, hippocampal-amygdaloid transition area (all from the head) and cornu ammonis 1, cornu ammonis 3 and cornu ammonis 4 (all from the body) in the right-predominant variant. All hippocampal subregion/subfield volumes are affected in semantic dementia, although some are more affected in both dominant and non-dominant hemispheres of the right-predominant than the left-predominant variant by the time of presentation. Involvement of hippocampal structures is apparently more subregion dependent than subfield dependent, indicating possible superiority of subregion volumes as disease biomarkers.

6.
Acta Neuropathol ; 147(1): 73, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641715

RESUMO

The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Cerebelo , Degeneração Lobar Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cerebelo/patologia , Expansão das Repetições de DNA/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Perfilação da Expressão Gênica , Transcriptoma
7.
Eur J Neurol ; : e16320, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686979

RESUMO

BACKGROUND AND PURPOSE: Primary lateral sclerosis (PLS) is a neurodegenerative disorder that primarily affects the central motor system. In rare cases, clinical features of PLS may overlap with those of progressive supranuclear palsy (PSP). We investigate neuroimaging features that can help distinguish PLS with overlapping features of PSP (PLS-PSP) from PSP. METHODS: Six patients with PLS-PSP were enrolled between 2019 and 2023. We compared their clinical and neuroimaging characteristics with 18 PSP-Richardson syndrome (PSP-RS) patients and 20 healthy controls. Magnetic resonance imaging, 18F-flortaucipir positron emission tomography (PET), quantitative susceptibility mapping, and diffusion tensor imaging tractography (DTI) were performed to evaluate eight brain regions of interest. Area under the receiver operating characteristic curve (AUROC) was calculated. RESULTS: Five of the six PLS-PSP patients (83.3%) were male. Median age at symptom onset was 61.5 (52.5-63) years, and all had mixed features of PLS and PSP. Volumes of the pallidum, caudate, midbrain, and cerebellar dentate were smaller in PSP-RS than PLS-PSP, providing good discrimination (AUROC = 0.75 for all). The susceptibilities in pallidum, midbrain, and cerebellar dentate were greater in PSP-RS compared to PLS-PSP, providing excellent discrimination (AUROC ≥ 0.90 for all). On DTI, fractional anisotropy (FA) in the posterior limb of the internal capsule from the corticospinal tract was lower in PLS-PSP compared to PSP-RS (AUROC = 0.86), but FA in the superior cerebellar peduncle was lower in PSP-RS (AUROC = 0.95). Pallidum flortaucipir PET uptake was greater in PSP-RS compared to PLS-PSP (AUROC = 0.74). CONCLUSIONS: Regional brain volume, tractography, and magnetic susceptibility, but not tau-PET, are useful in distinguishing PLS-PSP from PSP.

8.
J Neurol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632125

RESUMO

OBJECTIVE: Frontal hypometabolism on FDG-PET is observed in progressive supranuclear palsy (PSP), although it is unclear whether it is a feature of all PSP clinical variants and hence whether it is a useful diagnostic feature. We aimed to compare the frequency, severity, and pattern of frontal hypometabolism across PSP variants and determine whether frontal hypometabolism is related to clinical dysfunction. METHODS: Frontal hypometabolism in prefrontal, premotor, and sensorimotor cortices was visually graded on a 0-3 scale using CortexID Z-score images in 137 PSP patients. Frontal asymmetry was recorded. Severity scores were used to categorize patients as premotor-predominant, prefrontal-predominant, sensorimotor-predominant, mixed-predominance, or no regional predominance. Frontal ratings were compared across PSP clinical variants, and Spearman correlations were used to assess relationships with the Frontal Assessment Battery (FAB). RESULTS: 97% showed evidence of frontal hypometabolism which was most common (100%) in the speech-language (PSP-SL), corticobasal (PSP-CBS), and frontal (PSP-F) variants and least common in the progressive gait freezing (PSP-PGF) variant (73%). PSP-SL and PSP-CBS showed more severe hypometabolism than Richardson's syndrome (PSP-RS), Parkinsonism (PSP-P), and PSP-PGF. A premotor-predominant pattern was most common in PSP-SL and PSP-CBS, with more mixed patterns in the other variants. Hypometabolism was most commonly asymmetric in PSP-SL, PSP-P, PSP-F and PSP-CBS. Worse hypometabolism in nearly all frontal regions correlated with worse scores on the FAB. CONCLUSIONS: Frontal hypometabolism is a common finding in PSP, although it varies in severity and pattern across PSP variants and will likely be the most diagnostically useful in PSP-SL and PSP-CBS.

9.
Brain Commun ; 6(2): fcae113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660629

RESUMO

Progressive supranuclear palsy is a neurodegenerative disease characterized by the deposition of four-repeat tau in neuronal and glial lesions in the brainstem, cerebellar, subcortical and cortical brain regions. There are varying clinical presentations of progressive supranuclear palsy with different neuroimaging signatures, presumed to be due to different topographical distributions and burden of tau. The classic Richardson syndrome presentation is considered a subcortical variant, whilst progressive supranuclear palsy with predominant speech and language impairment is considered a cortical variant, although the pathological underpinnings of these variants are unclear. In this case-control study, we aimed to determine whether patterns of regional tau pathology differed between these variants and whether tau burden correlated with neuroimaging. Thirty-three neuropathologically confirmed progressive supranuclear palsy patients with either the Richardson syndrome (n = 17) or speech/language (n = 16) variant and ante-mortem magnetic resonance imaging were included. Tau lesion burden was semi-quantitatively graded in cerebellar, brainstem, subcortical and cortical regions and combined to form neuronal and glial tau scores. Regional magnetic resonance imaging volumes were converted to Z-scores using 33 age- and sex-matched controls. Diffusion tensor imaging metrics, including fractional anisotropy and mean diffusivity, were calculated. Tau burden and neuroimaging metrics were compared between groups and correlated using linear regression models. Neuronal and glial tau burden were higher in motor and superior frontal cortices in the speech/language variant. In the subcortical and brainstem regions, only the glial tau burden differed, with a higher burden in globus pallidus, subthalamic nucleus, substantia nigra and red nucleus in Richardson's syndrome. No differences were observed in the cerebellar dentate and striatum. Greater volume loss was observed in the motor cortex in the speech/language variant and in the subthalamic nucleus, red nucleus and midbrain in Richardson's syndrome. Fractional anisotropy was lower in the midbrain and superior cerebellar peduncle in Richardson's syndrome. Mean diffusivity was greater in the superior frontal cortex in the speech/language variant and midbrain in Richardson's syndrome. Neuronal tau burden showed associations with volume loss, lower fractional anisotropy and higher mean diffusivity in the superior frontal cortex, although these findings did not survive correction for multiple comparisons. Results suggest that a shift in the distribution of tau, particularly neuronal tau, within the progressive supranuclear palsy network of regions is driving different clinical presentations in progressive supranuclear palsy. The possibility of different disease epicentres in these clinical variants has potential implications for the use of imaging biomarkers in progressive supranuclear palsy.

10.
J Int Neuropsychol Soc ; : 1-9, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525671

RESUMO

OBJECTIVE: To determine whether poorer performance on the Boston Naming Test (BNT) in individuals with transactive response DNA-binding protein 43 pathology (TDP-43+) is due to greater loss of word knowledge compared to retrieval-based deficits. METHODS: Retrospective clinical-pathologic study of 282 participants with Alzheimer's disease neuropathologic changes (ADNC) and known TDP-43 status. We evaluated item-level performance on the 60-item BNT for first and last available assessment. We fit cross-sectional negative binomial count models that assessed total number of incorrect items, number correct of responses with phonemic cue (reflecting retrieval difficulties), and number of "I don't know" (IDK) responses (suggestive of loss of word knowledge) at both assessments. Models included TDP-43 status and adjusted for sex, age, education, years from test to death, and ADNC severity. Models that evaluated the last assessment adjusted for number of prior BNT exposures. RESULTS: 43% were TDP-43+. The TDP-43+ group had worse performance on BNT total score at first (p = .01) and last assessments (p = .01). At first assessment, TDP-43+ individuals had an estimated 29% (CI: 7%-56%) higher mean number of incorrect items after adjusting for covariates, and a 51% (CI: 15%-98%) higher number of IDK responses compared to TDP-43-. At last assessment, compared to TDP-43-, the TDP-43+ group on average missed 31% (CI: 6%-62%; p = .01) more items and had 33% more IDK responses (CI: 1% fewer to 78% more; p = .06). CONCLUSIONS: An important component of poorer performance on the BNT in participants who are TDP-43+ is having loss of word knowledge versus retrieval difficulties.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38514176

RESUMO

BACKGROUND: Primary progressive aphasia (PPA) defines a group of neurodegenerative disorders characterised by language decline. Three PPA variants correlate with distinct underlying pathologies: semantic variant PPA (svPPA) with transactive response DNA-binding protein of 43 kD (TDP-43) proteinopathy, agrammatic variant PPA (agPPA) with tau deposition and logopenic variant PPA (lvPPA) with Alzheimer's disease (AD). Our objectives were to differentiate PPA variants using clinical and neuroimaging features, assess progression and evaluate structural MRI and a novel 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) image decomposition machine learning algorithm for neuropathology prediction. METHODS: We analysed 82 autopsied patients diagnosed with PPA from 1998 to 2022. Clinical histories, language characteristics, neuropsychological results and brain imaging were reviewed. A machine learning framework using a k-nearest neighbours classifier assessed FDG-PET scans from 45 patients compared with a large reference database. RESULTS: PPA variant distribution: 35 lvPPA (80% AD), 28 agPPA (89% tauopathy) and 18 svPPA (72% frontotemporal lobar degeneration-TAR DNA-binding protein (FTLD-TDP)). Apraxia of speech was associated with 4R-tauopathy in agPPA, while pure agrammatic PPA without apraxia was linked to 3R-tauopathy. Longitudinal data revealed language dysfunction remained the predominant deficit for patients with lvPPA, agPPA evolved to corticobasal or progressive supranuclear palsy syndrome (64%) and svPPA progressed to behavioural variant frontotemporal dementia (44%). agPPA-4R-tauopathy exhibited limited pre-supplementary motor area atrophy, lvPPA-AD displayed temporal atrophy extending to the superior temporal sulcus and svPPA-FTLD-TDP had severe temporal pole atrophy. The FDG-PET-based machine learning algorithm accurately predicted clinical diagnoses and underlying pathologies. CONCLUSIONS: Distinguishing 3R-taupathy and 4R-tauopathy in agPPA may rely on apraxia of speech presence. Additional linguistic and clinical features can aid neuropathology prediction. Our data-driven brain metabolism decomposition approach effectively predicts underlying neuropathology.

12.
Neuroimage ; 290: 120564, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442778

RESUMO

Posterior cortical atrophy (PCA) and dementia with Lewy bodies (DLB) show distinct atrophy and overlapping hypometabolism profiles, but it is unknown how disruptions in structural and functional connectivity compare between these disorders and whether breakdowns in connectivity relate to either atrophy or hypometabolism. Thirty amyloid-positive PCA patients, 24 amyloid-negative DLB patients and 30 amyloid-negative cognitively unimpaired (CU) healthy individuals were recruited at Mayo Clinic, Rochester, MN, and underwent a 3T head MRI, including structural MRI, resting state functional MRI (rsfMRI) and diffusion tensor imaging (DTI) sequences, as well as [18F] fluorodeoxyglucose (FDG) PET. We assessed functional connectivity within and between 12 brain networks using rsfMRI and the CONN functional connectivity toolbox and calculated regional DTI metrics using the Johns Hopkins atlas. Multivariate linear-regression models corrected for multiple comparisons and adjusted for age and sex compared DTI metrics and within-network and between-network functional connectivity across groups. Regional gray-matter volumes and FDG-PET standard uptake value ratios (SUVRs) were calculated and analyzed at the voxel-level using SPM12. We used univariate linear-regression models to investigate the relationship between connectivity measures, gray-matter volume, and FDG-PET SUVR. On DTI, PCA showed degeneration in occipito-parietal white matter, posterior thalamic radiations, splenium of the corpus collosum and sagittal stratum compared to DLB and CU, with greater degeneration in the temporal white matter and the fornix compared to CU. We observed no white-matter degeneration in DLB compared to CU. On rsfMRI, reduced within-network connectivity was present in dorsal and ventral default mode networks (DMN) and the dorsal-attention network in PCA compared to DLB and CU, with reduced within-network connectivity in the visual and sensorimotor networks compared to CU. DLB showed reduced connectivity in the cerebellar network compared to CU. Between-network analysis showed increased connectivity in both cerebellar-to-sensorimotor and cerebellar-to-dorsal attention network connectivity in PCA and DLB. PCA showed reduced anterior DMN-to-cerebellar and dorsal attention-to-sensorimotor connectivity, while DLB showed reduced posterior DMN-to-sensorimotor connectivity compared to CU. PCA showed reduced dorsal DMN-to-visual connectivity compared to DLB. The multimodal analysis revealed weak associations between functional connectivity and volume in PCA, and between functional connectivity and metabolism in DLB. These findings suggest that PCA and DLB have unique connectivity alterations, with PCA showing more widespread disruptions in both structural and functional connectivity; yet some overlap was observed with both disorders showing increased connectivity from the cerebellum.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Imagem de Tensor de Difusão , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética , Atrofia , Doença de Alzheimer/metabolismo
13.
J Neurol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551740

RESUMO

Overlap between language and visual variants of atypical Alzheimer's disease (AD) has been reported. However, the extent, frequency of overlap, and its neuroanatomical underpinnings remain unclear. Eighty-two biomarker-confirmed AD patients who presented with either predominant language (n = 34) or visuospatial/perceptual (n = 48) deficits underwent detailed clinical examinations, MRI, and [18F]flortaucipir-PET. Subgroups were defined based on language/visual testing and patterns of volume loss and tau uptake were assessed. 28% of the language group had visual dysfunction (marked in 8%), and 47% of the visual group had language impairment (marked in 26%). Progressive involvement of the parieto-occipital and frontal lobes was noted with greater visual impairment in the language group, and greater left parieto-temporal and frontal involvement with worsening language impairment in the visual group. Only 25% of our cohort showed a pure language or visual presentation, highlighting the high frequency of syndromic overlap in atypical AD and the diagnostic challenge of categorical phenotyping.

14.
Neurol Genet ; 10(2): e200134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38515991

RESUMO

Objectives: To introduce the first case in which primary progressive apraxia of speech (PPAOS) is associated with TAR DNA-binding protein 43 (TDP-43) instead of 4-repeat tau. Methods: This patient was identified through a postmortem autopsy. Following an initial diagnostic evaluation, he participated in 3 annual research visits during which speech, language, cognitive, and neurologic assessments were administered. Neuroimaging was also acquired. Results: Apraxia of speech was diagnosed at his initial visit with a comprehensive neurologic examination further revealing subtle motor findings in the right hand. At subsequent visits, agrammatic aphasia and motor symptoms consistent with corticobasal syndrome were evident. Cognition and behavior remained relatively intact until advanced stages. FDG-PET revealed hypometabolism in the right temporoparietal cortex and left premotor and motor cortices. There was also low-level signal in the right temporoparietal cortex on tau-PET. A sequence variation in the progranulin gene was identified (GRN c.1A>C, p.Met1). Pathologic diagnosis was TDP-43 Type A with an atypical distribution of inclusions in premotor and motor cortices. Discussion: This case report demonstrates that TDP-43 Type A inclusions in an atypical distribution can present clinically as PPAOS. The sequence variation in the progranulin gene and asymmetric temporoparietal cortex involvement were the strongest indications of the unusual neuropathophysiology prior to autopsy.

15.
Alzheimers Dement ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528318

RESUMO

INTRODUCTION: Glial fibrillary acidic protein (GFAP) in plasma is a proxy for astrocytic activity and is elevated in amyloid-ß (Aß)-positive individuals, making GFAP a potential blood-based biomarker for Alzheimer's disease (AD). METHODS: We assessed plasma GFAP in 72 Aß-positive participants diagnosed with the visual or language variant of AD who underwent Aß- and tau-PET. Fifty-nine participants had follow-up imaging. Linear regression was applied on GFAP and imaging quantities. RESULTS: GFAP did not correlate with Aß- or tau-PET cross-sectionally. There was a limited positive correlation between GFAP and rates of tau accumulation, particularly in the language variant of AD, although associations were weaker after removing one outlier patient with the highest GFAP level. DISCUSSION: Among Aß-positive AD participants with atypical presentations, plasma GFAP did not correlate with levels of AD pathology on PET, suggesting that the associations between GFAP and AD pathology might plateau during the advanced phase of the disease.

17.
Brain Commun ; 6(2): fcae005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444909

RESUMO

Disruption of the default mode network is a hallmark of Alzheimer's disease, which has not been extensively examined in atypical phenotypes. We investigated cross-sectional and 1-year longitudinal changes in default mode network sub-systems in the visual and language variants of Alzheimer's disease, in relation to age and tau. Sixty-one amyloid-positive Alzheimer's disease participants diagnosed with posterior cortical atrophy (n = 33) or logopenic progressive aphasia (n = 28) underwent structural MRI, resting-state functional MRI and [18F]flortaucipir PET. One-hundred and twenty-two amyloid-negative cognitively unimpaired individuals and 60 amyloid-positive individuals diagnosed with amnestic Alzheimer's disease were included as controls and as a comparison group, respectively, and had structural and resting-state functional MRI. Forty-one atypical Alzheimer's disease participants, 26 amnestic Alzheimer's disease participants and 40 cognitively unimpaired individuals had one follow-up functional MRI ∼1-2 years after the baseline scan. Default mode network connectivity was calculated using the dual regression method for posterior, ventral, anterior ventral and anterior dorsal sub-systems derived from independent component analysis. A global measure of default mode network connectivity, the network failure quotient, was also calculated. Linear mixed-effects models and voxel-based analyses were computed for each connectivity measure. Both atypical and amnestic Alzheimer's disease participants had lower cross-sectional posterior and ventral and higher anterior dorsal connectivity and network failure quotient relative to cognitively unimpaired individuals. Age had opposite effects on connectivity in Alzheimer's disease participants and cognitively unimpaired individuals. While connectivity declined with age in cognitively unimpaired individuals, younger Alzheimer's disease participants had lower connectivity than the older ones, particularly in the ventral default mode network. Greater baseline tau-PET uptake was associated with lower ventral and anterior ventral default mode network connectivity in atypical Alzheimer's disease. Connectivity in the ventral default mode network declined over time in atypical Alzheimer's disease, particularly in older participants, with lower tau burden. Voxel-based analyses validated the findings of higher anterior dorsal default mode network connectivity, lower posterior and ventral default mode network connectivity and decline in ventral default mode network connectivity over time in atypical Alzheimer's disease. Visuospatial symptoms were associated with default mode network connectivity disruption. In summary, default mode connectivity disruption was similar between atypical and amnestic Alzheimer's disease variants, and discriminated Alzheimer's disease from cognitively unimpaired individuals, with decreased posterior and increased anterior connectivity and with disruption more pronounced in younger participants. The ventral default mode network declined over time in atypical Alzheimer's disease, suggesting a shift in default mode network connectivity likely related to tau pathology.

18.
Brain Behav ; 14(1): e3346, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376044

RESUMO

BACKGROUND: Progressive apraxia of speech (PAOS) is characterized by difficulties with motor speech programming and planning. PAOS targets gray matter (GM) and white matter (WM) microstructure that can be assessed using diffusion tensor imaging (DTI) and multishell applications, such as neurite orientation dispersion and density imaging (NODDI). In this study, we aimed to apply DTI and NODDI to add further insight into PAOS tissue microstructure. METHODS: Twenty-two PAOS patients and 26 age- and sex-matched controls, recruited by the Neurodegenerative Research Group (NRG) at Mayo Clinic, underwent diffusion MRI on 3T MRI. Brain maps of fractional anisotropy (FA) and mean diffusivity (MD) from DTI and intracellular volume fraction (ICVF) and isotropic volume fraction (IsoVF) from NODDI were generated. Global WM and GM, and specific WM tracts were identified using tractography and lobar GM regions. RESULTS: Global WM differences between PAOS and controls were greatest for ICVF, and global GM differences were greatest for MD and IsoVF. Abnormalities in key WM tracts involved in PAOS, including the body of the corpus callosum and frontal aslant tract, were identified with FA, MD, and ICVF, with excellent differentiation of PAOS from controls (area under the receiver operating characteristic curves >.90). MD and ICVF identified abnormalities in arcuate fasciculus, thalamic radiations, and corticostriatal tracts. Significant correlations were identified between an index of articulatory errors and DTI and NODDI metrics from the arcuate fasciculus, frontal aslant tract, and inferior longitudinal fasciculus. CONCLUSIONS: DTI and NODDI represent different aspects of brain tissue microstructure, increasing the number of potential biomarkers for PAOS.


Assuntos
Apraxias , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Neuritos , Fala , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem
19.
J Speech Lang Hear Res ; 67(3): 811-820, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38376491

RESUMO

PURPOSE: Apraxia of speech (AOS) is a motor speech disorder affecting articulatory planning and speech programming. When AOS is the sole manifestation of neurodegeneration, it is termed primary progressive apraxia of speech (PPAOS). Recent work has shown that there are distinct PPAOS subtypes: phonetic, prosodic, and those that do not clearly align with either (mixed). PPAOS subtypes differ with respect to the predominating motor speech difficulties, as well as disease progression and underlying pathology. Because past studies have determined PPAOS subtype based on clinical impression, the goal of the present study was to quantitatively determine the distribution of speech error types across PPAOS subtypes in a word repetition task and to investigate how word complexity affects the type and number of speech errors across PPAOS subtypes. METHOD: Forty-five patients with PPAOS (13 phonetic, 23 prosodic, and nine mixed) and 45 healthy controls produced multiple repetitions of words that varied in phonetic complexity. Sound additions, deletions, and substitutions/distortions (phonetic errors) and within-word segmentations (prosodic errors) were calculated. RESULTS: All three PPAOS groups produced significantly more errors than controls, but the total number of errors was comparable among subtypes. The phonetic group produced more phonetic-type errors compared to the prosodic group but comparable to the mixed group. The prosodic group produced more segmentations compared to the phonetic and mixed PPAOS groups. As word complexity increased, the total number of errors increased for PPAOS patients. The phonetic and prosodic groups were more likely to produce phonetic- and prosodic-type errors, respectively, as word complexity increased. CONCLUSIONS: This study provides novel quantitative data showing that PPAOS subtype can be supported by the type and distribution of speech errors in a word repetition task. This may facilitate earlier, more reliable differential diagnosis and aid in disease prognosis, as PPAOS subtypes have distinct disease trajectories.


Assuntos
Apraxias , Fala , Humanos , Apraxias/diagnóstico , Distúrbios da Fala , Fonética , Cognição
20.
Brain Commun ; 6(1): fcae002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419734

RESUMO

Loss of facial recognition or prosopagnosia has been well-recognized for over a century. It has been categorized as developmental or acquired depending on whether the onset is in early childhood or beyond, and acquired cases can have degenerative or non-degenerative aetiologies. Prosopagnosia has been linked to involvement of the fusiform gyri, mainly in the right hemisphere. The literature on prosopagnosia comprises case reports and small case series. We aim to assess demographic, clinical and imaging characteristics and neurological and neuropathological disorders associated with a diagnosis of prosopagnosia in a large cohort. Patients were categorized as developmental versus acquired; those with acquired prosopagnosia were further subdivided into degenerative versus non-degenerative, based on neurological aetiology. We assessed regional involvement on [18F] fluorodeoxyglucose-PET and MRI of the right and left frontal, temporal, parietal and occipital lobes. The Intake and Referral Center at the Mayo Clinic identified 487 patients with possible prosopagnosia, of which 336 met study criteria for probable or definite prosopagnosia. Ten patients, 80.0% male, had developmental prosopagnosia including one with Niemann-Pick type C and another with a forkhead box G1 gene mutation. Of the 326 with acquired prosopagnosia, 235 (72.1%) were categorized as degenerative, 91 (27.9%) as non-degenerative. The most common degenerative diagnoses were posterior cortical atrophy, primary prosopagnosia syndrome, Alzheimer's disease dementia and semantic dementia, with each diagnosis accounting for >10% of this group. The most common non-degenerative diagnoses were infarcts (ischaemic and haemorrhagic), epilepsy-related and primary brain tumours, each accounting for >10%. We identified a group of patients with non-degenerative transient prosopagnosia in which facial recognition loss improved or resolved over time. These patients had migraine-related prosopagnosia, posterior reversible encephalopathy syndrome, delirium, hypoxic encephalopathy and ischaemic infarcts. On [18F] fluorodeoxyglucose-PET, the temporal lobes proved to be the most frequently affected regions in 117 patients with degenerative prosopagnosia, while in 82 patients with non-degenerative prosopagnosia, MRI revealed the right temporal and right occipital lobes as most affected by a focal lesion. The most common pathological findings in those with degenerative prosopagnosia were frontotemporal lobar degeneration with hippocampal sclerosis and mixed Alzheimer's and Lewy body disease pathology. In this large case series of patients diagnosed with prosopagnosia, we observed that facial recognition loss occurs across a wide range of acquired degenerative and non-degenerative neurological disorders, most commonly in males with developmental prosopagnosia. The right temporal and occipital lobes, and connecting fusiform gyrus, are key areas. Multiple different pathologies cause degenerative prosopagnosia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA